Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Molecules ; 26(21)2021 Nov 06.
Artículo en Inglés | MEDLINE | ID: covidwho-1502470

RESUMEN

The normal function of the airway epithelium is vital for the host's well-being. Conditions that might compromise the structure and functionality of the airway epithelium include congenital tracheal anomalies, infection, trauma and post-intubation injuries. Recently, the onset of COVID-19 and its complications in managing respiratory failure further intensified the need for tracheal tissue replacement. Thus far, plenty of naturally derived, synthetic or allogeneic materials have been studied for their applicability in tracheal tissue replacement. However, a reliable tracheal replacement material is missing. Therefore, this study used a tissue engineering approach for constructing tracheal tissue. Human respiratory epithelial cells (RECs) were isolated from nasal turbinate, and the cells were incorporated into a calcium chloride-polymerized human blood plasma to form a human tissue respiratory epithelial construct (HTREC). The quality of HTREC in vitro, focusing on the cellular proliferation, differentiation and distribution of the RECs, was examined using histological, gene expression and immunocytochemical analysis. Histological analysis showed a homogenous distribution of RECs within the HTREC, with increased proliferation of the residing RECs within 4 days of investigation. Gene expression analysis revealed a significant increase (p < 0.05) in gene expression level of proliferative and respiratory epithelial-specific markers Ki67 and MUC5B, respectively, within 4 days of investigation. Immunohistochemical analysis also confirmed the expression of Ki67 and MUC5AC markers in residing RECs within the HTREC. The findings show that calcium chloride-polymerized human blood plasma is a suitable material, which supports viability, proliferation and mucin secreting phenotype of RECs, and this suggests that HTREC can be a potential candidate for respiratory epithelial tissue reconstruction.


Asunto(s)
Mucosa Respiratoria/metabolismo , Ingeniería de Tejidos/métodos , Tráquea/trasplante , Diferenciación Celular , Proliferación Celular , Células Epiteliales/metabolismo , Epitelio/metabolismo , Estudios de Factibilidad , Humanos , Antígeno Ki-67/análisis , Antígeno Ki-67/genética , Mucina 5AC/análisis , Mucina 5AC/genética , Membrana Mucosa/metabolismo , Cultivo Primario de Células/métodos , Mucosa Respiratoria/fisiología , Tráquea/metabolismo , Tráquea/fisiología
2.
Cells ; 10(7)2021 06 26.
Artículo en Inglés | MEDLINE | ID: covidwho-1389304

RESUMEN

The lungs are affected by illnesses including asthma, chronic obstructive pulmonary disease, and infections such as influenza and SARS-CoV-2. Physiologically relevant models for respiratory conditions will be essential for new drug development. The composition and structure of the lung extracellular matrix (ECM) plays a major role in the function of the lung tissue and cells. Lung-on-chip models have been developed to address some of the limitations of current two-dimensional in vitro models. In this review, we describe various ECM substitutes utilized for modeling the respiratory system. We explore the application of lung-on-chip models to the study of cigarette smoke and electronic cigarette vapor. We discuss the challenges and opportunities related to model characterization with an emphasis on in situ characterization methods, both established and emerging. We discuss how further advancements in the field, through the incorporation of interstitial cells and ECM, have the potential to provide an effective tool for interrogating lung biology and disease, especially the mechanisms that involve the interstitial elements.


Asunto(s)
Dispositivos Laboratorio en un Chip , Enfermedades Pulmonares/patología , Pulmón/fisiología , Regeneración/fisiología , Mucosa Respiratoria/citología , COVID-19/patología , COVID-19/terapia , COVID-19/virología , Células Cultivadas , Matriz Extracelular/fisiología , Humanos , Pulmón/citología , Pulmón/patología , Enfermedades Pulmonares/fisiopatología , Enfermedades Pulmonares/terapia , Modelos Biológicos , Mucosa Respiratoria/patología , Mucosa Respiratoria/fisiología , SARS-CoV-2/patogenicidad , Técnicas de Cultivo de Tejidos/instrumentación , Técnicas de Cultivo de Tejidos/métodos
3.
Front Immunol ; 12: 679482, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1285291

RESUMEN

Infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes COVID-19, a disease that involves significant lung tissue damage. How SARS-CoV-2 infection leads to lung injury remains elusive. The open reading frame 8 (ORF8) protein of SARS-CoV-2 (ORF8SARS-CoV-2) is a unique accessory protein, yet little is known about its cellular function. We examined the cellular distribution of ORF8SARS-CoV-2 and its role in the regulation of human lung epithelial cell proliferation and antiviral immunity. Using live imaging and immunofluorescent staining analyses, we found that ectopically expressed ORF8SARS-CoV-2 forms aggregates in the cytosol and nuclear compartments of lung epithelial cells. Using in silico bioinformatic analysis, we found that ORF8SARS-CoV-2 possesses an intrinsic aggregation characteristic at its N-terminal residues 1-18. Cell culture did not reveal any effects of ORF8SARS-CoV-2 expression on lung epithelial cell proliferation and cell cycle progression, suggesting that ORF8SARS-CoV-2 aggregates do not affect these cellular processes. Interestingly, ectopic expression of ORF8SARS-CoV-2 in lung epithelial cells suppressed basal expression of several antiviral molecules, including DHX58, ZBP1, MX1, and MX2. In addition, expression of ORF8SARS-CoV-2 attenuated the induction of antiviral molecules by IFNγ but not by IFNß in lung epithelial cells. Taken together, ORF8SARS-CoV-2 is a unique viral accessory protein that forms aggregates when expressing in lung epithelial cells. It potently inhibits the expression of lung cellular anti-viral proteins at baseline and in response to IFNγ in lung epithelial cells, which may facilitate SARS-CoV-2 escape from the host antiviral innate immune response during early viral infection. In addition, it seems that formation of ORF8SARS-CoV-2 aggregate is independent from the viral infection. Thus, it would be interesting to examine whether any COVID-19 patients exhibit persistent ORF8 SARS-CoV-2 expression after recovering from SARS-CoV-2 infection. If so, the pathogenic effect of prolonged ORF8SARS-CoV-2 expression and its association with post-COVID symptoms warrant investigation in the future.


Asunto(s)
COVID-19/inmunología , Pulmón/patología , Mucosa Respiratoria/fisiología , SARS-CoV-2/fisiología , Proteínas Virales/metabolismo , COVID-19/virología , Regulación de la Expresión Génica , Células HEK293 , Humanos , Inmunidad , Interferón gamma/metabolismo , Espacio Intracelular , Agregación Patológica de Proteínas , Mucosa Respiratoria/virología
4.
Front Immunol ; 12: 641360, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1247859

RESUMEN

Human SP-D is a potent innate immune molecule whose presence at pulmonary mucosal surfaces allows its role in immune surveillance against pathogens. Higher levels of serum SP-D have been reported in the patients with severe acute respiratory syndrome coronavirus (SARS-CoV). Studies have suggested the ability of human SP-D to recognise spike glycoprotein of SARS-CoV; its interaction with HCoV-229E strain leads to viral inhibition in human bronchial epithelial (16HBE) cells. Previous studies have reported that a recombinant fragment of human SP-D (rfhSP-D) composed of 8 Gly-X-Y repeats, neck and CRD region, can act against a range of viral pathogens including influenza A Virus and Respiratory Syncytial Virus in vitro, in vivo and ex vivo. In this context, this study was aimed at examining the likely protective role of rfhSP-D against SARS-CoV-2 infection. rfhSP-D showed a dose-responsive binding to S1 spike protein of SARS-CoV-2 and its receptor binding domain. Importantly, rfhSP-D inhibited interaction of S1 protein with the HEK293T cells overexpressing human angiotensin converting enzyme 2 (hACE2). The protective role of rfhSP-D against SARS-CoV-2 infection as an entry inhibitor was further validated by the use of pseudotyped lentiviral particles expressing SARS-CoV-2 S1 protein; ~0.5 RLU fold reduction in viral entry was seen following treatment with rfhSP-D (10 µg/ml). These results highlight the therapeutic potential of rfhSP-D in SARS-CoV-2 infection and merit pre-clinical studies in animal models.


Asunto(s)
COVID-19/prevención & control , Virus de la Influenza A/fisiología , Proteína D Asociada a Surfactante Pulmonar/metabolismo , Mucosa Respiratoria/fisiología , Virus Sincitiales Respiratorios/fisiología , Virión/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Células HEK293 , Humanos , Inmunidad Innata , Unión Proteica , Proteína D Asociada a Surfactante Pulmonar/genética , Proteínas Recombinantes/genética , Mucosa Respiratoria/virología , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/genética , Internalización del Virus
5.
Cells ; 10(6)2021 05 23.
Artículo en Inglés | MEDLINE | ID: covidwho-1243956

RESUMEN

The recent SARS-CoV-2 pandemic has refocused attention to the betacoronaviruses, only eight years after the emergence of another zoonotic betacoronavirus, the Middle East respiratory syndrome coronavirus (MERS-CoV). While the wild source of SARS-CoV-2 may be disputed, for MERS-CoV, dromedaries are considered as source of zoonotic human infections. Testing 100 immune-response genes in 121 dromedaries from United Arab Emirates (UAE) for potential association with present MERS-CoV infection, we identified candidate genes with important functions in the adaptive, MHC-class I (HLA-A-24-like) and II (HLA-DPB1-like), and innate immune response (PTPN4, MAGOHB), and in cilia coating the respiratory tract (DNAH7). Some of these genes previously have been associated with viral replication in SARS-CoV-1/-2 in humans, others have an important role in the movement of bronchial cilia. These results suggest similar host genetic pathways associated with these betacoronaviruses, although further work is required to better understand the MERS-CoV disease dynamics in both dromedaries and humans.


Asunto(s)
Inmunidad Adaptativa/genética , Camelus/virología , Enfermedades Transmisibles Emergentes/inmunología , Infecciones por Coronavirus/inmunología , Inmunidad Innata/genética , Zoonosis/inmunología , Animales , Anticuerpos Antivirales , Bronquios/citología , Bronquios/fisiología , COVID-19/genética , COVID-19/inmunología , COVID-19/virología , Camelus/genética , Camelus/inmunología , Cilios/fisiología , Enfermedades Transmisibles Emergentes/genética , Enfermedades Transmisibles Emergentes/transmisión , Enfermedades Transmisibles Emergentes/virología , Infecciones por Coronavirus/genética , Infecciones por Coronavirus/transmisión , Infecciones por Coronavirus/virología , Reservorios de Enfermedades/virología , Femenino , Predisposición Genética a la Enfermedad , Interacciones Microbiota-Huesped/genética , Interacciones Microbiota-Huesped/inmunología , Humanos , Masculino , Coronavirus del Síndrome Respiratorio de Oriente Medio/inmunología , Coronavirus del Síndrome Respiratorio de Oriente Medio/aislamiento & purificación , Coronavirus del Síndrome Respiratorio de Oriente Medio/patogenicidad , Mucosa Respiratoria/citología , Mucosa Respiratoria/fisiología , SARS-CoV-2/inmunología , SARS-CoV-2/patogenicidad , Emiratos Árabes Unidos , Replicación Viral/genética , Replicación Viral/inmunología , Zoonosis/genética , Zoonosis/transmisión , Zoonosis/virología
6.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artículo en Inglés | MEDLINE | ID: covidwho-1214016

RESUMEN

Here, we present a physiologically relevant model of the human pulmonary alveoli. This alveolar lung-on-a-chip platform is composed of a three-dimensional porous hydrogel made of gelatin methacryloyl with an inverse opal structure, bonded to a compartmentalized polydimethylsiloxane chip. The inverse opal hydrogel structure features well-defined, interconnected pores with high similarity to human alveolar sacs. By populating the sacs with primary human alveolar epithelial cells, functional epithelial monolayers are readily formed. Cyclic strain is integrated into the device to allow biomimetic breathing events of the alveolar lung, which, in addition, makes it possible to investigate pathological effects such as those incurred by cigarette smoking and severe acute respiratory syndrome coronavirus 2 pseudoviral infection. Our study demonstrates a unique method for reconstitution of the functional human pulmonary alveoli in vitro, which is anticipated to pave the way for investigating relevant physiological and pathological events in the human distal lung.


Asunto(s)
Dispositivos Laboratorio en un Chip , Modelos Biológicos , Alveolos Pulmonares/fisiología , Células Epiteliales Alveolares , Antivirales/farmacología , Fumar Cigarrillos/efectos adversos , Dimetilpolisiloxanos/química , Gelatina/química , Humanos , Hidrogeles/química , Metacrilatos/química , Porosidad , Alveolos Pulmonares/citología , Alveolos Pulmonares/patología , Respiración , Mucosa Respiratoria/citología , Mucosa Respiratoria/fisiología , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/patogenicidad
9.
Rev Esp Enferm Dig ; 112(5): 383-388, 2020 05.
Artículo en Inglés | MEDLINE | ID: covidwho-148632

RESUMEN

Although SARS-CoV-2 may primarily enter the cells of the lungs, the small bowel may also be an important entry or interaction site, as the enterocytes are rich in angiotensin converting enzyme (ACE)-2 receptors. The initial gastrointestinal symptoms that appear early during the course of Covid-19 support this hypothesis. Furthermore, SARS-CoV virions are preferentially released apically and not at the basement of the airway cells. Thus, in the setting of a productive infection of conducting airway epithelia, the apically released SARS-CoV may be removed by mucociliary clearance and gain access to the GI tract via a luminal exposure. In addition, post-mortem studies of mice infected by SARS-CoV have demonstrated diffuse damage to the GI tract, with the small bowel showing signs of enterocyte desquamation, edema, small vessel dilation and lymphocyte infiltration, as well as mesenteric nodes with severe hemorrhage and necrosis. Finally, the small bowel is rich in furin, a serine protease which can separate the S-spike of the coronavirus into two "pinchers" (S1 and 2). The separation of the S-spike into S1 and S2 is essential for the attachment of the virion to both the ACE receptor and the cell membrane. In this special review, we describe the interaction of SARS-CoV-2 with the cell and enterocyte and its potential clinical implications.


Asunto(s)
Betacoronavirus/patogenicidad , Infecciones por Coronavirus/metabolismo , Enterocitos/virología , Enfermedades Gastrointestinales/virología , Intestino Delgado/virología , Peptidil-Dipeptidasa A/metabolismo , Neumonía Viral/metabolismo , Enzima Convertidora de Angiotensina 2 , Betacoronavirus/metabolismo , COVID-19 , Infecciones por Coronavirus/virología , Enterocitos/metabolismo , Enfermedades Gastrointestinales/metabolismo , Humanos , Intestino Delgado/citología , Intestino Delgado/metabolismo , Pandemias , Neumonía Viral/virología , Receptores de Angiotensina/metabolismo , Mucosa Respiratoria/fisiología , Mucosa Respiratoria/virología , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA